

Experiences with the GENE-AUTO Code Generator
in the Aerospace Industry

A.-E. Rugina1, J.-C. Dalbin2

1: Astrium Satellites, 31 rue des Cosmonautes, 31042 Toulouse cedex 4

ana-elena.rugina@astrium.eads.net
Phone: +33 (0)5 62 19 78 06

Fax: +33 (0)5 62 19 71 58

2: Airbus Operations SAS, 316 route de Bayonne, 31060 Toulouse cedex 9
jean-charles.dalbin@airbus.com

Phone: +33 (0)5 61 18 08 76
Fax: +33 (0)5 61 93 03 54

Abstract: This paper gives an overview of the most
recent experimentations that Astrium and Airbus
conducted with the GENE-AUTO code generator
during 2009. GENE-AUTO is an open source
automatic and qualifiable C code generator taking as
input Simulink®/Stateflow® and Scilab/Scicos
models. It was developed in the context of an ITEA
European project that ended in December 2008
(www.geneauto.org). The GENE-AUTO toolset is
currently maintained by its developers and evaluated
for industrial usage by several end-users. This paper
presents the case studies that we used for
evaluation purposes, explains the organisation
between the users and technology providers with
respect to the toolset maintenance and summarizes
the experimentation results.

Keywords: qualifiable code generator, Simulink®

1. Introduction

The development of real-time embedded systems,
such as those in the aerospace domain, faces well-
known increasing constraints, in particular related to
higher system complexity and shorter time to market.
Such conflicting requirements are the origin of
significant efforts towards the improvement of the
current development processes. In the aerospace
industry, increasing complexity is due to increasing
functional requirements as well as related to
autonomy, safety, performance and dependability.
This complexity maps to a growing number of
software functions that must be thoroughly tested
and compliant with the certification standards
(DO178B for aeronautics, ECSS for the space
domain). In addition, in the space industry, the
system must be designed to favour maintainability
during system operation. On the other hand,
reducing the cost and the time to market is
mandatory for obvious competitiveness reasons. In
this context, the definition of optimized engineering

practices is imperative. Automatic code generation
has already proven very effective in shortening the
time to market and in guaranteeing the quality of the
generated code especially if the code generator is
qualified. Since 2002, Airbus has extensively used a
software development process including Qualified
Automatic Code Generation (ACG) with significant
and measured savings:
• Airbus has never experienced problems in flight

due to coding errors in the Flight Control System
software.

• Software development time was divided by 3
(including verification activities), compared to a
process without ACG.

In the context of space applications, several
experiments were conducted to assess the
advantages of automatic code generation. In
particular, Astrium demonstrated through several
projects and experiments (e.g., DIVAS �[1] and
LOLA �[2]) that automatic code generation brings a
real gain in efficiency in the context of fast
prototyping for systems requiring complex algorithms
and multi-tasking. Astrium also conducted internal
studies (e.g., SCAOGEN) to evaluate the use of
modelling and automatic code generation in the
regular system and software development process
of the satellite Attitude and Orbit Control System
(AOCS).
The aerospace and automotive industries joined
their efforts in order to define a common
development workshop for critical embedded
systems, using standard formalisms and open-
source tools. This objective led to setting up the
GENE-AUTO project (www.geneauto.org) in 2006 in
the context of the ITEA European research program.
Both Airbus and Astrium were members of the
GENE-AUTO consortium. The concrete objective of
the project was to develop an automatic and
qualifiable C code generator from models created
with Simulink®/Stateflow® and Scilab/Scicos. The

project ended successfully in December 2008. The
GENE-AUTO toolset is currently maintained by its
developers and evaluated for industrial usage by
several end-users.
The advantages offered by the GENE-AUTO toolset
are as follows:
• It was designed and developed based on a

common set of user requirements coming from
the automotive and aerospace domains and
having in mind certification (DO178B level A).

• It is open-source (GPL licence), which favours
the long-term maintenance (up to 30-50 years)
and the independence with respect to providers’
policies.

• Its architecture is modular and flexible. Based on
model-driven engineering concepts, GENE-
AUTO consists in a set of elementary tools and
intermediary models that make it highly
evolvable. In particular, the users are able to
define their own supported block library (i.e.,
users can define the code to be generated for
model blocks that are not supported by the
public GENE-AUTO toolset), or the code
optimizations that are required for a specific
hardware target. Also, even though the C
language has initially been selected as target, it
is possible to target a different language, e.g.,
Ada, with a minimum amount of effort.

• It represents a proof that formal methods can be
successfully integrated in such tools. Indeed, a
proof assistant was used for implementing one
of the GENE-AUTO elementary tools �[3], �[4].

This paper presents the experiments conducted in
2009 by Airbus and Astrium with the GENE-AUTO
code generator, based on models currently used
during system design and that are the basis for
software development. The remainder of the paper
is structured as follows. Section �2 gives an overview
of the experimentation context both from the point of
view of the technical objectives and of the industrial
organization between the toolset users and its
developers. Section �3 sketches the characteristics of
the selected case studies, while the main
experimentation results are summarized in Section
�4. Section �5 concludes the paper.

2. Context and Industrial Organization

Both Airbus and Astrium had conducted earlier
experimentations during the GENE-AUTO ITEA
project. Some of the results have been presented in
�[5]. The subsequent experimentations that we have
conducted in 2009 aimed at improving both the
users' confidence in the toolset and the maturity
level of the GENE-AUTO technology.
The second objective mentioned above can only be
fulfilled if the technology evolves based on the user
feedback. This is the reason why we have set up a

maintenance contract between Airbus and Astrium
as users on the one hand and Alyotech and IB
Krates as developers of GENE-AUTO on the other
hand. The adopted maintenance scheme had the
advantage of federating the efforts both on user and
developers sides. From a practical point of view, a
common web-based tool was used for the support
requests. Periodic Change Control Boards gathering
all stakeholders allowed prioritizing the actions with
respect to the available budget, distributing the
charges and workload and deciding about the
contents and dates of new releases.
Most of the work has been performed in the
framework of the OBSYS EADS demonstrator, which
gathers the various EADS Business Units in their
efforts towards engineering process optimization and
practical integration of new technologies.

3. Case Studies

3.1. Flight Control Logic & Laws (Airbus application)
The targeted objectives of the Airbus case studies
were related to two topics: system design and
software design, as follows.
From the system design point of view, the aim was:
• to enhance the current design practices by using

modelling features such as automata, vectors
and buses,

• to experiment the ability to modify and to mix
existing formalisms (data flow named SAO –
former version of SCADE) with
Simulink®/Stateflow®, taking advantage of the
expressiveness power of new modelling
concepts without having to completely re-specify
existing specifications.

From the software point of view, the aim was:
• to participate in the maturation of the GENE-

AUTO toolset by using it on current
specifications (within a DO178B software
development context),

• to test the ability to customize the source code
produced by GENE-AUTO for specific needs
(coding standards, optimization, reducing CPU
consumption),

• to evaluate the generated code, in terms of CPU
and memory consumption, on a real HW target,

• to evaluate the integration of code generated by
GENE-AUTO with legacy code.

The code generated by GENE-AUTO was compared
with reference code generated by tools currently
used at Airbus.
The model was developed using the R2006b release
of TheMathworksTM tools (Simulink®, Stateflow®).
The performance analyses (CPU time and memory
consumption) were carried out by using logical
analysers dedicated to the target HW (Intel 486).

In the first case study (named StickPriority), a part of
the Flight Control Logics was re-designed using
state-machines to improve expressiveness of the
specification. From a practical point of view, in this
first scenario an existing SAO node (pure data flow)

was replaced by a Simulink® model calling a state
machine. As we can see in Figure 1, this Simulink®
model includes a part of the existing data flow. The
use of the automata allows identifying directly the
five states previously buried in the pure data flow.

Figure 1: Re-designing the Original Model to Include State Machines

In the second case study (named MIMO Corrector),
a part of the Flight Control Laws was re-designed
using discrete vector based model (see Figure 2). 38
SAO nodes similar to the one shown in Figure 2 are
necessary to represent a Kalman filter defined in
Simulink® as MIMO correctors.

The interest of the use of vector and matrix
computation in the model is obviously the
optimization of the size of the specification (38 SAO
nodes vs. 2 Simulink® nodes) and its readability.

Figure 2: Re-designing the Original Model to Include Vectors

This MIMO corrector is composed of two
components: the corrector C1 in Figure 3 (activated
at a sequencing cycle of 10ms) and the pre-
command C3 in Figure 4 (activated at a sequencing
cycle of 40ms). C1 is a purely vector model, while
C3 uses a mix of scalar and vector symbols.

Figure 3: MIMO Corrector C1 Simulink® Model

Figure 4: MIMO Pre-command C3 Simulink® Model

Modifications for compliance with the Software
context
The data coupling between the Simulink® model and
the unmodified parts of the SAO specification
induced the necessity to define interfaces (types and
names), to have a consistent global specification
and to allow GENE-AUTO to propagate types.
Within the Simulink® model all used symbols were
defined as subsystems (to have the same interfaces

as SAO symbols). Each subsystem was defined with
Simulink® native symbols. For each of them an
occurrence number was affected within the mask
parameter (they are used for code in-lining).
Software production
Two different pieces of software were developed
from each model:
1. For the first one (GeneAuto_Pur), the C source

code was produced by GENE-AUTO with no
code generation option.

2. For the second one (GeneAuto_Bib_Embarque),
GENE-AUTO was used to replace Simulink®
symbols by a set of macros call written manually
(Airbus macro library used with SAO
specification). To allow GENE-AUTO to support
the platform specificities (and to allow to re-use
of the Airbus library) for the symbols, its
standard block library was extended through a
set of user-defined typers and backends (the
source code for the vectorial symbols was
developed from scratch). Relevant symbols were
AND, COMP1, LD, OR, PULSE1, PULSE2,
ADD, ADD_VEC (vector addition), DELAY,
DELAY_VEC (vector delay), DIVR, LIM, MULT,
MULT_VEC (matrix / vector multiplication), SUB,
SUB_VEC (vector subtraction), SWITCH_N.

For these two pieces of software, the code
generated by GENE-AUTO was a reusable C
function. Wrapping code was developed for updating
the input parameters before the call of the function
and the output parameters afterwards.

3.2. AOCS System (Astrium application)
The case study selected by Astrium is based on a
recently-developed demonstrator for the new
avionics features of the AstroSat 250 platform
(targeting low earth orbit missions). The AstroSat
250 platform is based on a new computer including a
LEON3 processor, on a new generation start tracker
and on a gyroless attitude and orbit control mode
running at 16Hz (based on star tracker and control
moment gyro actuators). The architecture of the
demonstrator is presented in Figure 5.
The on-board software (OBSW) and its environment
are both specified in a closed-loop Simulink® model.
It is noteworthy that there is strict separation
between Simulink® models of the OBSW and of the
environment. In the original demonstrator, C code
was generated from the model of the application
software within the OBSW (the data handling layer
was manually coded) and the environment model by
using the Real-Time Workshop (RTW®) code
generator provided by TheMathworksTM. The
generated pieces of code corresponding respectively
to the OBSW and to the environment have been
each installed on different computers connected with
the actuators through a network. The goal of the
experimentation with GENE-AUTO was to replace

the code generation of the OBSW application
software that was originally performed with RTW® by
a code generation with GENE-AUTO.
The OBSW Simulink® model is formed of 3186
blocks architected in 10 hierarchical levels. To be
able to run, about 2000 constants must be initialized
prior to the execution (originally, the initialization was
done through the workspace by loading a .mat file).
Matlab® functions (e.g., trigonometric functions) are
extensively used in the model, as well as Embedded
Matlab® blocks containing control laws and
algorithms representing mode automata. The model
also contains a large number of execution control
blocks such as Switch and SwichCase.

Two Stateflow® charts were also added on the one
hand to evaluate the approach of coupling dataflow
with Stateflow® models and on the other hand to
fully test the capabilities of GENE-AUTO.
The model has been developed using the following
releases of TheMathworksTM tools:
• Matlab® 7.5 (R2007b)
• Simulink® 7.0 (R2007b)
• Stateflow® 7.0 (R2007b)
Before being processed by GENE-AUTO, the model
was saved under Simulink® version R14-SP3 (the
version officially supported by GENE-AUTO).

SimTG RTS /
Real time Linux

1553

PPS

Ethernet1

Ethernet2PCI/VME

Simulation kernel

1553
I/F

Ethernet
I/F

Synchro
I/F

VME
I/F

CMG, STR, MTQ, GPS
core models &

Environment model

CMG, STR, MTQ, GPS
1553 model I/F

STR SCOE I/F

1553
model

CMG SCOE I/F

EthernetSTR SCOE
STR SCOE Ethernet

STR SCOE Ethernet

OBC mockup

OBSW DHS (specific)

OBSW normal mode
Application SW

1553

PPS

SPWUART

SPW to
Ethernet

RS422 to
RS232

3 images
One per
optical head

Wheel speed &
Angular position

CMG SCOE

VME

STR

1553 PPS

CMG

1553

UART

Ethernet1
Ethernet2SimTG CCS / Linux

SIMOPS & JSynoptic

GSIF

DSU

MATLAB/Simulink desktop computer

OBSW normal mode
Application SW

CMG, STR, MTQ, GPS
Environment model

RTW code generation RTW code generation

Gene-Auto code generation

Figure 5 : Demonstrator Architecture

In addition, we have performed several modifications
on the legacy model. They fall into the two following
categories that are further detailed in the next
paragraphs:
• Modifications for compliance of the input model

with the GENE-AUTO scope.
• Integration of Stateflow® features in order to

evaluate on the one hand the approach of
coupling dataflow with Stateflow® models and on
the other hand to fully test the capabilities of the
GENE-AUTO code generator.

Model Modifications for Compliance with the GENE-
AUTO Scope
Parameter Initialization: Usually, the Simulink®
simulations require the initialization of a number of
parameters before execution. This can be performed
in two ways: either by executing a Matlab® script
stored in an .m file, or by loading a workspace image

(load a binary .mat file). In our legacy model, the
initialization is performed by loading a .mat file, while
GENE-AUTO is able to parse simple .m files that
perform constant initializations. It is not able to read
binary .mat files1. Thus, we needed to create a .m
file from the .mat file. For that, we used a rather
artisanal method. We have been able to extract
automatically the scalars by using a Matlab® script
but this method did not succeed in retrieving the
structures. We have thus retrieved them manually by
inspecting the workspace once the .mat file has
been loaded.
Matlab® Expressions: Currently, GENE-AUTO does
not support the use of Matlab® expressions in
Constant blocks. Our legacy model uses such
expressions on a regular basis. Sometimes it is

1 Such files are built directly in Matlab®/Simulink® by

saving the workspace and their structure is not public.

simpler to use such expressions than to use
Simulink® blocks. However, they may be replaced by
Simulink® blocks (e.g., arithmetic and trigonometric
operations) that are currently supported by GENE-
AUTO.
Unsupported Blocks: Our legacy model was not
created having in mind the blocks supported by
GENE-AUTO. A number of unsupported blocks were
thus present in the model. Some of them could be
replaced by equivalent sets of supported blocks.
Embedded Matlab®: Our legacy model made
extensive usage of Embedded Matlab® blocks for
representing algorithms and mode automata. Since
GENE-AUTO supports legacy code but currently has
a limited Matlab® support (only for usage in the
initialization .m file), we decided to replace the
Embedded Matlab® blocks representing algorithms
by S-functions generated with RTW®. This also
allowed us to experiment the integration of code
generated by different tools. This topic is further
detailed in section �4.
Integration of Stateflow® Features
Our legacy model included two mode automata
represented by Embedded Matlab® blocks. While
the other Embedded Matlab® blocks were replaced

by S-functions, we decided to use Stateflow® to
model the two mode automata. The Embedded
Matlab® representation of the mode automata is a
function with data inputs and outputs (the data ports
of the block) in which the output values are set
depending on the values of the commands received
on the input ports (global if-then-else control
structure). The translation of such a representation
into a Stateflow® chart requires identifying the
different states (the different “if” conditions) and the
rule allowing to set the outputs depending on the
internal state and the values of the inputs. The chart
if formed of states, transitions and junctions.
Transitions are guarded by conditions referring to
inputs and sometimes specify actions represented
as output port data updates. The states specify entry
and exit actions for updating the output data ports,
e.g., the one corresponding to the current mode.
Junctions are used as a simplification facility
allowing to represent pseudo-states (states with no
associated action but necessary to separate more
complex control paths). Figure 6 depicts the
translation process for the mode automaton from the
Embedded Matlab® block to the Stateflow® chart.

Figure 6: Mode Automaton Translation from Embedded Matlab® to Stateflow®

4. Experimentation Results

Our experimentations aimed at evaluating the
generated code from different perspectives (e.g.,
code correctness, size, quality, traceability between
model and code, CPU and memory consumption)
and at investigating the straightforwardness of the
integrating of generated code with legacy code. Our
results with respect to the various topics are
summarized in the following paragraphs.
Generated Code Correctness
Astrium read parts of the generated code to asses
its correctness. The generated code was executed in
the model loop.
Airbus has even performed a functional verification
of the generated code on the real target. During this
functional verification, the generated code was
stimulated by using standard input value sets and
we observed identical behaviour on its outputs as
the reference software used in a real context.
These activities allowed us to identify few issues
regarding the generated code, such as:
• Incorrect use of constants with values between 0

and –1.
• Without optimization option, GENE-AUTO

produces a large amount of memory affectations
(temporary local data).

• The headers used in the generated code include
a “math.h” (which is not qualified in the
embedded software context).

• Matrix product did not use the correct index
(computation with a value out of array limit).

• Wrong type propagation between double and
simple precision for floating point numbers.

The identified issues were reported and most of
them are already solved (for the experimentation
purpose, the generated code was corrected by
hand). We have not found many bugs in the
generated code, but on the other hand, we have a
number of suggestions for extending GENE-AUTO
to support more Matlab®/Simulink® functionality. In
particular, Astrium suggested a concrete list of
additional Simulink® blocks and a subset of the
Embedded Matlab® language.
Code Size
In our previous experimentation Astrium had
compared GENE-AUTO generated code with
manual code derived from the same specifications
and found that the two were comparable in terms of
size, number of comment lines and complexity.
In the current experimentation, Astrium compared
the GENE-AUTO generated code with RTW®
generated code. We noted that the GENE-AUTO
generated code size (measured in LOC) is three
times smaller than that of the RTW® (RTW®
standard edition) generated code from the same

Simulink® model. Also, the amount of comment lines
for GENE-AUTO generated code is higher (27%)
than for the RTW® generated one (16%).
Traceability between Model and Code
Traceability between model and code was analysed
by reading the generated code and comparing it with
the input model. We have not identified any
particular problem (the analysis was conducted on
code generated without using the code optimization
module of GENE-AUTO). The comments placed in
the generated code point back to the original model
elements. It is noteworthy that the names given to
intermediary variables and input/output structures
corresponding to blocks are rather unreadable if the
corresponding names are not specified in the input
model.
CPU and Memory Consumption
Code generated by tools currently used at Airbus
(named reference_SAO) was used as reference for
the comparison of CPU and memory consumption.
The generated software releases did not reach the
expected performance level for several reasons
(non-optimized legacy code for vector computation,
need for updating of the input/output parameters of
the C function, extensive uses of temporary local
data, use of double precision in the input model).
The exploitation of the code optimizer of GENE-
AUTO (which suppresses intermediary useless
variables) and the use of simple precision variables
(instead of double) allowed obtaining results similar
to those of the reference code in terms of CPU
performance.
We observed an increase of the memory
consumption (especially the RAM) when using
vectors with GENE-AUTO. This is once again due to
the important use of local variables instead of global
ones (as it is done in the reference code).
The ROM consumption is also greater, due to the
use of more complex computation (matrix
computations, for loops, etc.).
Code Quality
During the ITEA European project, we had used
commercial tools LogiscopeTM Rulechecker in order
to evaluate the generated code quality with respect
to the Astrium C-coding standard that is used for
manual code. The additional experimentation
conducted in 2009 did not reveal any changes in the
characteristics of the generated code: most of the
coding rules are fulfilled. Only a naming rule is
violated very often but the names in the code
depend mainly on the existing names in the input
model, which should follow the naming rules set for
the manually-written code. MISRA rule 11 is also
often violated (Identifiers shall not rely on the
significance of more than 31 characters). Longer
variable names do exist in the code. However, these
names are derived from the model.

Integration of Generated Code with Legacy Code
In a real operational environment, we can expect to
have to integrate legacy code (manually written or
generated with another tool) with the generated
code. Therefore, it is interesting to investigate the
ways integration may be performed.
The Astrium case study model includes many
Embedded Matlab® blocks, which are currently not
supported by GENE-AUTO. As a consequence, our
strategy was to generate code with RTW® from the
Embedded Matlab® blocks and then integrate the
code generated with RTW® and GENE-AUTO.
There are several ways to integrate parts of code
generated by GENE-AUTO with parts of code
generated by another tool from a given model. The
first method is manual and consists in the following
steps:
• Masking all subsystems that are not to be

generated by GENE-AUTO thus forcing the code
generator to ignore them (a comment will appear
in the generated code as replacement of the
corresponding function call).

• Generating the code from those subsystems
with another code generator.

• Integrating the pieces of code by hand.

Another method consists in the following steps:
• Generating the code from the selected

subsystems with another code generator than
GENE-AUTO.

• Replacing those subsystems inside the model by
legacy code S-functions (using the generated
code).

• Generating code from the whole model with
GENE-AUTO.

We have selected this second method, since part of
the integration work is performed automatically by
the GENE-AUTO code generator. Indeed, GENE-
AUTO is able to parse legacy code S-function blocks
and call the associated legacy code from the GENE-
AUTO generated code, provided that the
corresponding S-function blocks are masked and
that the mask properties are set properly.
In practice, the integration of the RTW-generated
code back into the model requires using a wrapper,
as the RTW-generated function has no input
parameters and no return values (the inputs and
outputs of the block are stored in a globally declared
structure containing one data for each port). On the
other hand, the convention for a legacy code S-
function is that each return value is converted into an
output port of the corresponding Simulink® block and
each input parameter is converted into an input port
of the block. Hence, it is necessary to wrap the
RTW-generated S-function in order to import it back
again in the Simulink® model with explicit input and
output ports. The wrapper function assigns the

values of the parameters of the wrapper function to
the elements of the globally declared input structure.
Then it calls the automatically-generated function. At
the end, it assigns the values of the globally
declared output structure elements to the output
parameters of the wrapper function.
Software Investigation
Airbus conducted experiments for the introduction of
“investigation variables” or probes represented in the
Simulink® model by scopes to give visibility to some
internal variables. A particular backend was
developed to exploit the scopes in the generated
code. These extra-variables used here for the
software debugging phase would be also very useful
for the validation teams. This has to be further
studied in order to determine the relevant (necessary
and sufficient) states or signals we need in order to
perform the system validation.

5. Conclusion

The experimentation conducted in the context of the
OBSYS EADS demonstrator met its objectives, i.e.,
increase both our confidence in GENE-AUTO and
the maturity level of the toolset.
We demonstrated the functional equivalence
between the reference code/model and the code
generated by GENE-AUTO from models using
different formalisms (Simulink®, Stateflow®, SAO).
The use of automata and vectors improve the
readability and ease the understanding, thus the
maintainability of a system specification.
We found few bugs in the current GENE-AUTO
toolset, whose maturity level is rather good, taken
into account its age and history. On the other hand,
we have identified useful enhancements for the
toolset. In particular, we believe that enriching the
supported block library would be of much help for
potential users. We have suggested a list of
additional blocks to be supported. Moreover, taken
into account the confirmed trend to replace C code
S-functions by Embedded Matlab® blocks in Astrium
Satellites, support for Embedded Matlab® becomes
very important. More generally, further investigations
related to the code generation could focus on the
use of local variables vs. global variables and
optimizations (e.g., temporary local data, matrix
computation to avoid for example full computation
when matrices are not full).
It was demonstrated that GENE-AUTO allows to
customize and to optimize the source code, similarly
to the Airbus code generator. The results in terms of
performance (with the right options and with the last
releases of the toolset) are similar to those of the
Airbus code generator.
This experimentation allowed us to estimate the
maturity of the technology of the GENE-AUTO code
generator, which we consider having reached a level
of 5 for Airbus and 4 for Astrium (Airbus conducted

experimentation on a real case study involving
operational teams with system designers and
software developers, while Astrium conducted its
experimentation on a representative demonstrator
case study). Improvement of performance and
extension of capabilities of the generator are still
necessary before bringing the tool into the
industrialization phase.
We found that the maintenance organization that we
have set up was effective, allowing to federate
efforts both on user and provider sides. The OPEES
initiative should enforce these conclusions and the
long-term maintenance of the toolset through a
community of users and developers.

6. Acknowledgements

The authors would like to thank the toolset
development and maintenance team from IB Krates
and Alyotech for its valuable support and
responsiveness.

7. References

[1] P. Diris, et al.: “Astrosat 250 Core Avionics
Hardware in the loop Demonstration using Fast
prototyping Technologies”, Data Systems in
Aerospace (DASIA 2009), Istanbul, Turkey,
2009.

[2] http://www.astrium.eads.net/en/prog/lola.html
[3] N. Izerrouken, et al.: “Certifying an Automated

Code Generator Using Formal Tools:
Preliminary Experiments in the GENE-AUTO
Project” in ERTS’08, Toulouse, France, January
2008

[4] N. Izerrouchen, M. Pantel and X. Thirioux:
“Machine-Checked Sequencer for Critical
Embedded Code Generator”, Springer LNCS
proceedings of the International Conference on
Formal Engineering Methods (ICFEM'09), pp.
521-540, Rio De Janeiro, Brazil, December 09.-
12. 2009.

[5] A.-E. Rugina, et al.: "GENE-AUTO: Automatic
Software Code Generation for Real-Time
Embedded Systems", Data Systems in
Aerospace (DASIA 2008), Palma de Majorca,
Spain, 2008.

8. Glossary

ACG: Automatic Code Generation
AOCS: Attitude and Orbit Control System
LOC: Lines Of Code
MIMO: Multiple Input Multiple Output
OBSW: On-Board Software
RTW: Real-Time Workshop
SAO: Specification Assistée par Ordinateur (Computer-
assisted specification)

